13.已知双曲线C:-,=9.点N的坐标为(m,n),其中m,ne1,2,3,存在过点N的直线与双曲线C相交于A,(15分)如图,已知料三按柱AC-AB,G中,侧面B,CC1侧面AMB,B侧面B,CC是矩形,侧面MBBB两点,且点N为弦AB的中点.则点N的坐标是·(写出一个符合条件的答案即可)是菱形,∠BMM,=60°,AB=2BC=2,点E是核AM,的中点14已知a>0且0时,不等式aeh(m)名0恒成立,则正数m的取值范阴是(I)证明:BE1平面BB,C,C;(2)求二面角A,-B,C-E的余弦值四、解答题:本题共5小题,共刀分。解答应写出文字说明、证明过程或演算步骤。15.(13分)已知函数fx)=2x'-3ar+1(1)当a=1时.求函数x)的单调递减区间(2)若x=0是函数八x)的极小值点,求实数a的取值范围16.(15分)某市为了解车主用车的能源类型与对该市交通拥堵感受的关系,共调查了100名车主,并得到如下的18.(17分)已知直线1x=2经过椭圆C.+=1(a>b>0)的右焦点F且被椭圆C截得的弦长为22.a2'622x2列联表:(1)求椭圆C的方程:觉得交通拥堵觉得交通不拥堵合计(2)若过点P(4,0)的动直线m与椭圆C相交于A,B两点,且直线1上的点M满足AM/F户,求证:直线MB过燃油车车主3020b50定点,并求该定点的坐标所能重车车主25050合计45100(1)将鞭率估计为复率,从该市燃油车和新能源车车主中随机抽取1名,记“抽取到燃油车车主”为事件A,“抽取到新能即车车主”为事件4:,“抽取到的车主觉得交通拥堵”为事件B,“抽取到的车主觉得交通不拥堵”为事件B十算P(BA).P(B1A,),比较它们的大小,并说明其意义;2)是否有0:的把程认为该市车主用车的能源类型与对该市交通拥堵的感受有关?将分析结果与(1)中结论进行比较,并作出解释期麦反公式:19.(17分)二进制是在数学和数字电路中以2为基数的记数系统,在这一系统中,通常用两个不同的符号0,1来表示数.如果十进制中的整数n=a·2+a-1·2-+…+a1·2+a(a,∈0,1,i=0,1,…,k),则这个数在二进制a01000.0100.001下记为a:a1a,a,即(n)o=(aa-1a,a)2.记十进制下的整数n在二进制表示下的各位数字之和为p(n).2706663510.828即p(n)=ao+a1+…+agn(ad-)-a)(cd)(ave)(.(1)计算p(7);(2)证明:p(4n+3)=p(2n+1)+1;(3)求数列{p(3·2”-1)的前n项和S鲂学第3页(共4页》数学第4页(共4页)